How to Recycle Post-consumer EV Batteries?

Energy storage systems, usually batteries, are essential for hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). For a long time, battery life and cost have been the technical bottleneck restricting the development of electric vehicles. Luckily we have never stopped our efforts in battery technology improvement and innovation.

From the most common lead-acid batteries, we now have greener power batteries like nickel metal hydride batteries, lithium cobalt oxide batteries, lithium manganese oxide batteries, polymers batteries, ultracapacitors,lithium iron phosphate batteries, etc. EV batteries have witnessed improved reliability and cycle life, and reduced cost.

Next,let’s learn something about the three popular batteries.

Lithium-ion batteries

Lithium-ion batteries are currently used in most portable consumer electronics such as cell phones and laptops because of their high energy per unit mass relative to other electrical energy storage systems. They have a high power-to-weight ratio, high energy efficiency, good high-temperature performance, and low self-discharge. Most components of lithium-ion batteries can be recycled, but the cost of material recovery remains a challenge for the industry. Most of today’s PHEVs and EVs use lithium-ion batteries, though the exact chemistry often varies from that of consumer electronics batteries. Research and development efforts are there to reduce their relatively high cost, extend their useful life, and address safety concerns in regard to overheating.

Nickel-metal hydride batteries

Nickel-metal hydride batteries, used routinely in computer and medical equipment, offer reasonable specific energy and specific power capabilities. Nickel-metal hydride batteries have a much longer life cycle than lead-acid batteries and are safe and abuse tolerant. These batteries have been widely used in HEVs. The main challenges with nickel-metal hydride batteries are their high cost, high self-discharge and heat generation at high temperatures, and the need to control hydrogen loss.

Lead-acid batteries

Lead-acid batteries can be designed to be high power and are less expensive, safe, and reliable. However, low specific energy, poor cold-temperature performance, and short cycle life impede their use. Advanced high-power lead-acid batteries are being developed, but these batteries are only used in commercially available electric-drive vehicles for ancillary loads.


Ultracapacitors store energy in a polarized liquid between an electrode and an electrolyte. Energy storage capacity increases as the liquid’s surface area increases. Ultracapacitors can provide vehicles additional power during acceleration and hill climbing and help recover braking energy. They may also be useful as secondary energy-storage devices in electric-drive vehicles because they help electrochemical batteries level load power.

How to recycle batteries?

Electric-drive vehicles are relatively new to the auto market, so only a small number of EVs have approached the end of their useful lives. As a result, few post-consumer batteries from electric-drive vehicles are available, thus limiting the development of battery-recycling infrastructure. As electric-drive vehicles become more and more common to us, the battery-recycling market will expand.

Widespread battery recycling would keep hazardous materials from entering the waste stream, both at the end of a battery’s useful life and during its production. Work is being done to develop battery-recycling processes that minimize the life-cycle impacts of using lithium-ion and other kinds of batteries in vehicles. But not all recycling processes are the same:

  • Smelting: Smelting processes recover basic elements or salts. These processes are operational now on a large scale and can accept multiple kinds of batteries, including lithium-ion and nickel-metal hydride. Smelting takes place at high temperatures, and organic materials, including the electrolyte and carbon anodes, are burned as fuel or reductant. The valuable metals are recovered and sent to refining so that the product is suitable for any use. The other materials, including lithium, are contained in the slag, which is now used as an additive in concrete.
  • Direct recovery: At the other extreme, some recycling processes directly recover battery-grade materials. Components are separated by a variety of physical and chemical processes, and all active materials and metals can be recovered. Direct recovery is a low-temperature process with minimal energy requirement.
  • Intermediate processes: The third type of process is between the two extremes. Such processes may accept multiple kinds of batteries, unlike direct recovery, but recover materials further along the production chain than smelting does.

Separating the different kinds of battery materials is often a stumbling block in recovering high-value materials. Therefore, battery design that considers disassembly and recycling is important in order for electric-drive vehicles to succeed from a sustainability standpoint. Standardizing batteries, materials, and cell design would also make recycling easier and more cost-effective.

The cause of EV battery recycling can’t be a success unless everyone in and out of the auto industry makes his/her contribution.

Subscribe to our newsletters and we will share valuableful information with you in the future, including but not limited to:
  1. Product Specifications or Drawings;
  2. Our Latest Product Catalog;
  3. Price List;
  4. EV Charging Industry Knowledge;
  5. Knowledge about Purchasing Electric Vehicle Charging Products;
  6. News on EV Charging;

It costs money to send newsletters. Don’t subscribe if you are not really interested in us.

We will keep your information strictly confidential, and you can cancel the subscription at any time. You may rest assured